
AC conductance, transfer matrix and small-frequency expansion in quasi-one-dimensional

systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 L121

(http://iopscience.iop.org/0953-8984/7/10/001)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 12:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/10
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter7 (1995) L121-Ll28. Printed in th8 UK 

LETTER TO THE EDITOR 

AC conductance, transfer matrix and small-frequency 
expansion in quasi-one-dimensional systems 
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Department of Physics. Ben-Furion University of the Negev, Beer-Shew Israel 

Received 5 December 1994 

Abstract. The AC conductance G(E, oj (at Fermi energy E and frequency o) of a quasi- 
one-dimensional system of finite length L govemed by a tight-binding model Hamiltonib is 
expressed in terms of the pertinent transfer matrices. Consequently, one can study dynamic 
response functions of disordered systems within the powerful framework of random (transfer) 
matrices, which proved to be extremely useful in the analysis of DC conductance. We employ 
this formalism to investigate the low-frequency behaviour of In G(E. U) .  As expected, the linear 
term vanishes, whereas the quadratic term cnn be expressed in terms of the eigenvalues of the 
rx transfer matrix. In a strictly one-dimensional case it can be written in te rm of the DC 
conductance and its energy derivatives. The thermodynamic limit L -, M cannot be t&n term 
by term. It is conjectured that, in general, (InC(E. U ) )  is not self-averaging, in agrrement with 
previous numerical results. 

The use of the transfer matrix algorithm is a very important tool in the investigation of DC 
conductance of mesoscopic systems. Many physical concepts such as weak localization, 
positive magneto-conductance, universal conductance fluctuations and universal corrections 
to localization length are elegantly analysed in terms of random transfer matrix theory. In 
addition, the use of transfer matrix formulation proves to be very useful in actual numerical 
computation, especially for disordered systems. While much progress has been recorded in 
applying transfer matrix techniques to the study of.Dc conductance, it is still not in frequent 
use in the investigation of AC conductance. This is not surprising, since, in that case, it is 
not enough to know the total transfer matrix (denoted hereafter by T ( E ) ) .  Inspection of 
the Kubo formula shows that in order to evaluate the AC conductance, the wave functions 
and the current must be evaluated inside the conducting system. Yet this information is 
available anyway when the total transfer matrix is computed, since one has to know the 
intermediate transfer matrices that transform the wave function from one point to another 
within the system. 

In one of our earlier works 111, we investigated the AC conductance G ( E ,  o) (at Fermi 
energy E and frequency o) o f ~ a  continuous quasi-one-dimensional system of finite length 
L. Within the standard linear response theory, a formalism was developed which uses 
the transfer matrices of the system in its computation. This formalism is based on the 
independent particle model, although the inclusion of electron-electron interaction within 
the screening approximation is, in principle, possible. Short- and long-wavelength spatial 
oscillations of the current response are included, but if the short period is eliminated by 
dephasing, the AC response reduces to an analogous expression derived recently [Z]. 

The purpose of the present work is twofold. First, the formalism will be extended also 
for tight-binding models. As it turns out, the derivation of the AC conductance, staaing 
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from the Anderson tight-binding model Hamiltonian and the Kuho formula, requires some 
manipulations, since the transfer mitrices are needed in the plane wave representation. We 
skip some technical details and present in (IO) the dynamic conductance G(E, w )  in terms 
of the intermediate transfer matrices. 

Our second goal is to study the low-frequency expansion of In G(E. o) since it is related 
to the question of localization at finite frequency. We show that the first-order frequency 
correction vanishes (this is to be expected) and then obtain in (27) a closed expression for 
the quadratic term (under some reasonable approximations), in terms of the eigenvalues 
of the matrix TtT. We also address the question of whether InG(E,o) is self-averaging. 
Indeed, in the DC case, and for L + 00, -In G(E, 0)/2L is independent of L. (For strictly 
one-dimensional systems, it is equal to I/C(E), the inverse localization length.) At finite 
frequency, the limiting procedure turns out to be more difficult to perform. Taking the limit 
L + CO on each term of the power series in o proves to he ill-defined. We conjecture that, 
in general, In G(E, w )  is not self-averaging, confirming earlier numerical results. 

Consider an electron hopping on a 2D square lattice (with lattice constant a = I), of 
infinite length in the x direction, and width M in the y direction. The dynamics of the 
electron is governed by the tight-binding Hamiltonian [3,4] 

where [I jm))  is a complete set of orthonormal and localized states associated with the lattice 
sites ( j ,  m). The hopping matrix element between nearest neighbours in the y direction is 
taken to be the unit of energy, while that between nearest neighbours in the x direction is 
V. We adopt hard wall boundary conditions in they direction. The disorder is implemented 
as random fluctuations of the site energies within a finite portion of the entire system 

Starting with the Schrodinger equation HW = E* the wave function is expanded in terms 
of lattice site stam 

where k,,, and E are related through 

E=2Vcoskm+E,,, 

I) are the transverse energies c in which E,,, = 2cos[?tm/(M + 1)1 (m = 1,2. .  . . , 
I the 

standing waves. The 2M components (a,,, bj,,,) with m = 1 , 2 , .  . . , M are denoted by the 
vector (uj, bj).  The transformation from (U]-[, bj-l) to (uj, bj) is carried out by a transfer 
matrix in the plane wave representation, namely, 

, 

(2) =7’)(2::) E7 ( j ~  7 U-II , , , 7 ( ~ )  ( i ;)  = T( j )  (E:) (5) 
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where 

Here I is the 2M x 2M unit matrix, and the matrices &). a and p(j) are diagonal M x M 
matrices with elements 

In (5), To) is the transfer matrix in the plane wave representation. The transfer matrix 
through the entire system is T = T(j=‘). Having obtained the transfer matrix in the plane 
wave representation we now use it to compute the AC conductance. 

Following Fisher and Lee [5] we assume that a spatially homogeneous electric field 
E = {Eo exp(iwt), 0,O) is applied within a finite portion of the system of length L, located 
between two ideal leads. The AC conductance G ( E , w )  can be defined by the energy 
absorption rate P = G ( E ,  o)(E,,,L)? where Ems is the root of the mean square of E.  In 
the linear response approximation one obtains 

where (al. Ib) and E,. Eb are eigenstates and eigenenergies of the entire system, and 
f ( 6 )  = (1 + exp[(e - E)/kTl)-’ is the Fermi distribution function. The current operator 
J ( j )  is given by 

The evaluation of G ( E ,  o) in terms of transfer matrices is straightforward and follows the 
procedure explained in [I]. The following steps are to be carried out. 

(i) Start from a given initial vector of coefficients (at j = 0) and use the expansion 
(3) to express the current (9) in terms of the transfer matrices T(j). Anticipating the 
energy integration in (8), this procedure should be executed for two energies, E, = E 
and Eh = E + R o .  

(ii) Substitute the current computed in step (i) into (8) and perform all the integrals and 
sums. 

(iii) Eliminate the dependence on the initial vector of coefficients by noting that the 
conductance can be written as a trace of a certain matrix. The final expression reads 

where 
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The matrix @ ( E )  can be expressed in terms of the total transfer matrix or alternatively in 
terms of the reflection amplitudes matrix r (E ) ,  

The dynamic matrix f2 is 

L 

a ( E , E + A w )  = C[TG)(E)lt  H”)(E,E+Aw)T(-”(EfAw). (13) 
j=l 

The transfer matrices T and T(j) have been defined above in (5) and (6). The 2 M x Z M  matrix 
H contains kinematic terms determined by the momenta k.(E) and q;(E) = k,(E +Eo). 
It is useful to define K, = k , (E)  + k,(E + Aw), and Q, k , ( E )  - k,(E +Aw) (see (4) 
for the relation between E and k.(E)) .  Explicitly (omitting energy arguments), we get 

with diagonal M x M blocks 

Equations (10) and (1 1) with the auxiliary definitions (12)-(15) complete our first objective. 
It gives the AC conductance G ( E , w )  (for systems governed by a tight-binding model 
Hamiltonian) in terms of the intermediate transfer matrices T(j) and the kinematic matrices 
H(j) at energies E and E + ho.  It has the simple and transparent structure of a DC 
conductance formula in which the physical processes of emission and absorption of a single 
photon are taking place. Note that the above formalism holds also for the continuous model 
[I] .  

As a check on the validity of our equations we show that in the zero-frequency limit 
w + 0 the AC conductance G ( E , w )  reduces to the denominator-free version of the 
Biittiker-Landauer DC conductance. Indeed, the transfer matrices TG)(E) satisfy the current 
conservation (unitarity) relation 

Using this relation in (11) after performing the energy integration (10) we obtain -+ C. 
Replacing f2 by E in (1 1) and T(E + Aw) by T, we get the Pichard formula for the DC 
conductance [6] 

h + (TiT)-’ + 21]-’} . 

We now move on to carry out the second part of our work and use our results to investigate 
the low-frequency behaviour of the AC conductance at zero temperature and link it to the 
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eigenvalues of the matrix TiT. To be more specific, the relevant dimensionless parameter 
that should be kept small in the low-frequency expansion is w L / u  (where U is the Fermi 
velocity). Let us expand the dimensionless AC conductance r ( E ,  w )  (h/eZ)G(E, w )  up 
to second order in w. This requires some technical steps which lead to expression (27) 
below. The uninterested reader can join the discussion after (24).~ 

Using the notation g(E) = [ag(E, w)/aw],,o and &(E) = [ag(E, w)/aEl,o we 
have 

where goc(E) is the Dc conductance, which can be written in terms of the mavix Q ( E )  
defined above (equation (12)) 

gm(E) = fTr[O(E)CO(E)C]. (19) 

For the derivative of g(E, w )  at w = 0 one obtains 

Using the relation Tr(AB) = Tr(BA) and some other simple algebraic manipulations, it is 
easily seen that the first term vanishes while the second term is 

Substituting (20) and (21) into ( I  8) shows that the first-order term in the frequency expansion 
vanishes, and hence 

To proceed further, we follow Buttiker (1992a) and Buttiker and Thomas (1992) [2]  and 
use a couple of reasonable approximations which lead to a simplified form of g ( E ,  0). 
The short-wavelength spatial oscillation with period K-] can be replacec~by 2k(E) over 
a substantial range of frequencies. Furthermore, the long-wavelength period of oscillations 
Q-' is replaced by U/@, where U is the Fermi velocity. Under these two assumptions we 
can approximate the product of matrices [ ~ c j ) ( E  +hw)]tX.rG)(l?) rz X (see (5) for the 
definition of ,(I)). Hence, we get 

~~ g(E,w) =Tr( i [Q(E)Z@(E f f i w ) C l ]  (23) 

where the matrices 0 and C~ have been defined in (12) and (16) respectively. In this 
representation we can employ (21) to express the second-order frequency  derivative^ at zero 
frequency in terms of the second-order energy derivative 
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Consider now the matrix [7] 

AZL(E) = Tt(E)T(E) ( 2 3  

with eigenvalues exp(f2Lori). The DC conductance can be expressed as [SI 

where hi = I/cosh(Lq) are the eigenvalues of the matrix multiplication O(E)X. Using 
this expression we can obtain the second-order frequency correction to the steady state 
conductance, in terms of At 

This result is general for quasi-one-dimensional systems with an arbitrary number M of 
channels. Its practical content cannot be overlooked, since, in this approximation, we do 
not have to know the exact frequency dependence of the g(E, o). In other words, the AC 
conductance is determined through the energy dependence of the eigenvalues of TtT. 

For strictly one-dimensional systems ( M  = I), further progress can be made, which can 
shed light on the question of localization at finite frequency. In this case, the second-order 
correction can be written in terms of the derivative of IngK(E) 

with the proviso that wL/v is small, or equivalently, 

In the insulating regime where L >> C(E) (here c (E)  is the localization length at energy 
E ) ,  we may take goc a exp(-2L/c). Then, to second order in the frequency o we have 

(30) 

It is tempting at this point to take the thermodynamic limit L + 03 and to regard the 
limit of the right-hand side of (30) (if it exists) as the inverse localization length at finite 
frequency. Unfortunately, this is not possible in general, since y(E) is quadratic in L, and 
for large L and fixed frequency, the restriction (29) will no longer hold. Since the dynamic 
conductance depends on both frequency and length, the various limits (L + m, o -+ 0) 
have to be taken carefully. We have already asserted that as o + 0, the DC conductance is 
recovered, so that the procedure limL,,lim,,~(ln r ( E ,  o)/2L) = l/C(E) is well defined. 
On the other hand, if one needs to keep the frequency small but finite, and then to go to 
the thermodynamic limit, the procedure L 4 m should be camed out starting from (10) 
and (11) directly without relying on low-frequency expansion. In that case, our numerical 

Inr(E,w) I n g d E )  (W2 y(E) 1 @02 y(E) -- - - -  - -,__-,= - - 
2L 2L 6 2L C(E) 6 2L ‘ 
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calculations (which are not yet completed) indicate that -In r ( E ,  0) is proportional to In L 
(except for some special energies), in agreement with earlier numerical results (see MaSek 
and Kramer 1988 [3 ] ) .  Therefore we must conclude that In r ( E ,  w )  is not self-averaging, 
and hence the concept of localization at finite frequency is ill-defined, but still, the AC 
conductance tends to zero as L + CO. Somewhat unexpectedly, this later result seems to 
violate Mott's law (asserting finite bulk AC conductivity a ( w )  in the insulating regime). 
This point has already been discussed elsewhere [3], where it has been conjectured that the 
measured conductance cannot be~simply related to the conductivity by Ohm's law. 

Finally, let us apply our results on two one-dimensional disordered systems in which 
the energy dependence of the localization length : (E)  is known analytically (albeit 
approximately). The first one is in the Anderson model, where the random site energies 
cj are uniformly distributed within the interval [-W/Z, Wj2J.  In the weak-disorder limit 
W -+ 0 and for energies not too close to the band edges ( E  # fZ), the standard non- 
degenerate perturbation theory for the localization length yields [9]  : (E)  Y (4 - E z ) / W z  
(the hopping matrix element V is taken to be unity). In the band centre ( E  = 0) we then. 
obtain 

In this particular case, the right-hand side is independent of L,  and In r ( E  = 0, U )  is self- 
averaging (this is true up to w2) .  The right-hand side of (31) can therefore be regarded as 
the inverse localization length at finite frequency. We must emphasize here that this result 
is special and may not be valid away from the band centre. 

As another example we consider a particle moving in a one-dimensional Gaussian white 
noise potential U ( x ) ,  with ( U ( x ) )  = 0 and (U(x )U(x ' ) )  = 2DS(x - x ' ) .  The localization 
length is given by [IO], 

2E 
~D 

< ( E ) = -  ~ E - + + c o  

which implies 

Here we see that the correction depends on L,  and that taking-the limit L -+ 03 on the 
right-hand side is meaningless. This is not surprising, since we must,always respect the 
inequality (29). 

To conclude, in the present work we. have achieved two main goals. (a) We have 
developed a formal algorithm for the computation of dynamic response functions of a 
quasi-onedimensional mesoscopic system in terms of its pertinent transfer matrices (in the 
plane wave representation), starting from a tight-binding Hamiltonian and the Kubo formula. 
(b) We investigated the low-frequency behaviour of the conductance. As long as the length 
L of the system is kept finite, an expansion in a power series of the frequency o is well 
defined. As expected for a dissipative conductance, the first-order term vanishes (in fact, this 
is expected for any odd power). The correction then starts at second order in the frequency 
and can be related to the energy derivatives of the DC conductance. In the thermodynamic 
limit, the low-frequency expansion of the log of the conductance is not useful. Apparently, 
this quantity is not self-averaging. 

We thank M Biittiker, S Gredeskul, B Kramer and S I Ben-Abraham for very helpful 
discussions. 
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